Основные свойства функций. Справочник репетитора по математике

by Колпаков А.Н. on 11 марта 2011

Данная страница справочника представляет собой виртуальную шпаргалку по математике для учеников и методическое справочное пособие для репетиторов. Тема «свойства функций», адаптированное для разных уровней учащихся 8-9класов. В нем перечислены определения основных понятий и свойств, виды функций, термины и обозначения, принятые в математике. Репетитору по математике показаны образцы рисунков, которые должны остаться в теради ученика. Информация изложена как на строгом и формальном математическом языке (для среднего и сильного ученика), так на простом (бытовом) уровне, доступном для понимания широкому кругу посетителей сайта. Каждый такой перевод с математического языка на русский отмечен одним из следующих указателей: «пояснение репетитора по математике», «редакция репетитора по математике» или «уточнение репетитора по математике». В этих — переводах вы встретите несколько моих собственных уникальных дополнений и комментариев к классическим фомулировкам, которые я использую на занятиях со слабым учеником.

Определение функции: функцией или функциональной зависимостью называется такое соответствие f (x) при котором числу x из множества X сопоставляется некоторое единственное число из множества Y.

Редакция репетитора по математике: функцией называется закон или правило, по которому можно найти число y (значение какой-нибудь величины), если известно число x (значение какой-нибудь другой величины).

При этом букву x называют независимой переменной (или аргументом), а букву y — зависимой переменной. Число, которое подставляется вместо x, называется значением переменной (или значением аргумента), а число y, которому оно соответствует, называется значением функции.

График функции — множество точек на координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.

Пояснение репетитора по математике Графиком функции называется линия на координатной плоскости, каждая точка которой имеет следующие координаты: первая (абсцисса) — это значение аргумента x , а вторая (ордината) — найденное для этого икса значение функции y.

Свойства функции:

1) Что такое область определения функции? Область определения функции (О.О.Ф) — это множество всех значений переменной x, которые имеют соответствующие им значения функции.

Редакция репетитора по математике: область определения — множество значений переменной x, у которых можно найти y.

Справочник репетитора по математике. Область определения функции

Обозначения области определения Для обозначения области определения используются следующие знаки: D_f, D_y, D(f), D(y)
Как найти область определения по графику? Область определения — это промежутки на оси Ох, над которыми (или под которыми) имеются части графика.

2) Что такое область значений функции? Областью значений функции (О.З.Ф) называется множество всех ее значений.
Редакция репетитора по математике:областью значений функции можно назвать часть оси ОY, состоящую из игреков, у которых есть соответствующие им иксы.

Как найти область значений по графику?: область значений функции — это промежутки на оси OY, слева или справа от которых (в горизонтальной полоске) находятся части графика.

Справочник репетитора по математике. Область значений функции

3) Возрастание и убывание функции.
Какая функция называется возрастающей?Функция y=f(x) называется возрастающей, если для любой пары значений аргументов x_1 и x_2 из неравенства x_1<x_2 следует неравенство f(x_1)<f(x_2).

Справочник репетитора по математике. Промежуток возрастания функции

Редакция репетитора по математике: Функцию можно назвать возрастающей на промежутке, если, большему из любых двух взятых из него чисел всегда соответствует большее значение функции. Для графика это будет означать то, что при движении по нему карандашом слева направо карандаш будет подниматься вверх.

Какая функция называется убывающей? Функция y=f(x) называется убывающей, если для любой пары значений аргументов x_1 и x_2 из неравенства x_1<x_2 следует неравенство x\in (...,...)

Промежуток отрицательного знака — это множество тех значений переменной х, у которых соответствующие значения функции меньше нуля (y<0).
Как найти все такие промежутки по графику? Определите промежутки оси ОХ, у которых соответствующие кусочки графика ниже оси Ох.

Справочник репетитора по математике. Промежуток отрицательного знака функции.

Как их найти без графика? Составьте и решите неравенство f (x)<0
Оформление: y<o , если x\in (...,...)

5) Нули функции:Число a называется нулем функции, если соответствующее ему значение функции равно нулю, то есть f (a)=0.
Справочник репетитора по математике. Нули функции

Редакция репетитора по математике: нулями функции называются такие числа х, у которых соответствующие игреки равны нулю.
Как найти нули функции без графика? Составьте и решите уравнение f (x)=0, то есть приравняйте аналитическое выражение функции (правую часть ее записи) к нулю.
Как найти по графику? Определите абсциссы точек пересечения графика с осью Ох.
Оформление: y=o , если x_1=..., x_2=...)

7) Четность и нечетность функции.
а) Четность. Функция называется четной, если ее область определения симметрична относительно нуля и для любого x\in D_f верно равенство f(-x)=f(x).

Справочник репетитора по математике. Четная функция

Редакция репетитора по математике:функция называется четной, если любым двум противоположным значениям аргумента соответствуют равные значения функции.
Уточнение репетитора по математике: равенство f(-x)=f(x) можно получить только тогда, когда функция имеет симметричную область определения, поэтому проверку этой симметричности при решении задач часто опускают.
Как определить четность функции по графику?График четной функции должен быть симметричен оси Оу.
Пояснения репетитора по математике: симметрия графика означает то, что он состоит из двух частей, одна из которых является зеркальным отражением другой.

8) Нечетность. Функция называется нечетной, если ее область определения симметрична относительно нуля и для любого x\in D_f верно равенство f(-x)=-f(x).

Справочник репетитора по математике. Нечетная функция

Редакция репетитора по математике:функция называется нечетной, если любым двум противоположным значениям аргумента соответствуют противоположные значения функции.
Уточнение репетитора по математике: равенство f(-x)=f(x) можно получить только тогда, когда функция имеет симметричную область определения, поэтому проверку этой симметричности при решении задач часто опускают.
Как определить нечетность функции по графику?График нечетной функции должен быть симметричен началу координат, Пояснения репетитора по математике: симметрия означает то, что если какая-то точка лежит на графике, то и симметричная ей точка (с противоположными координатами) тоже должна лежать на графике.

9) Наименьшее и наибольшее значение функции.
Число a называется наименьшим значением функции на промежутке, если для любого значения аргумента x_0 из этого промежутка верно неравенство a \geqslant f(x_0) .

Справочник репетитора по математике. Наименьшее значение функции

Число a называется наибольшим значением функции на промежутке, если для любого значения аргумента x_0 из этого промежутка верно неравенство a \leqslant f(x_0) .
Справочник репетитора по математике. Наибольшее значение функции на отрезке

Материалы для подготовки к ГИА по математике, 9 класс.

Колпаков Александр Николаевич, репетитор по математике, профессиональный репетитор и методист. Москва, Строгино.

{ 4 комментариев… прочтите их или напишите еще один }

Георгий ноября 11, 2011 в 17:52

Очень хорошее объяснение для понимания и закрепления материала. Браво! Очень круто))

кирилл сентября 11, 2012 в 21:48

всё понятно написано , спасибо)

Людмила марта 21, 2013 в 16:05

Спасибо, Александр Николаевич! Теперь опечаток нет. А Ваши рисунки — «классные», они так наглядно и просто «говорят» о всех свойствах функции, что позволит учащимся легко усвоить данный вопрос!

Надежда сентября 16, 2014 в 15:00

Спасибо за материал. Все лаконично, ничего лишнего. У меня благодаря Вам большая экономия времени.

Оставьте комментарий