Занимательные олимпиадные задачи по математике: задачи на переливание

by Колпаков А.Н. on 21 октября 2011

Номера на переливание относятся к олимпиадным номерам, но предлагаются не только сильным ученикам. Интерес к простому условию заставляет школьника среднего уровня способностей активно искать решение на равных с сильным сверстником. Хороший репетитор по математике использует это стремление в 5 — 6 классах для воспитания интереса к предмету. Задачи не имеют возрастных ограничений и представляют собой хорошую головоломку даже для взрослого человека.

К сожалению, репетитор математики не сможет предложить для их решения какого-либо универсального способа. Общего алгоритма не существует, и справиться с каждым переливанием в отдельности можно только методом проб и ошибок. Из-за отсутствия какой бы то ни было привязки задач к программе 5 — 6 классов репетитор по математике получает полную свободу выбора времени на их изучение. Лучше всего оставлять их для домашней работы.

Олимпиадные задачи по математике на переливание

1) Имеются два сосуда: один объемом 4 литра, а другой объемом 9 литров. Получится ли с их помощью налить из озера ровно 6 литров воды? Разрешается переливать всю воду из одного сосуда в другой и выливать воду из любого из них обратно в озеро.

2) Богатырь подошел к реке с двумя ведрами, вмещающими 15 литров и 16 литров. Удастся ли ему налить (отмерить) при помощи этих ведер ровно 8 литров воды?

3) Молочница принесла молоко в восьмилитровом ведре, а у бабушки имеется только одна трехлитровая банка и одно четырехлитровое ведро. Как ей взять у молочницы 4 литра молока?

4) Отлейте из бочки ровно 13 литра кваса при помощи двух бидонов: один емкостью 17 литров, а другой емкостью 5 литров.

5) Бочка вмещает 12 ведер воды. Для полива с вечера ее наполнили до верху. Имеются две пустые бочки, вмещающие 5 ведер и 8 ведер воды. Разлейте содержимое бочки поровну.

6) В канистре не менее 10 литров керосина. Можно ли отлить из нее 6 литров керосина, используя девятилитровую и пятилитровую канистру?

7) В бочке не менее 13 ведер воды. Можно ли из нее отлить ровно 8 ведер, если имеются две пустые бочки, вмещающие 9 и 5 ведер?

8) Имеется два полных бидона яблочного сока по 10 литров в каждом. Как налить из них в две пустые кастрюли объемами 4 литра и 5 литров по 2 литра молока?

9) Бидон емкостью 10 литров наполнен квасом. Требуется перелить из него 5 литров в семилитровый бидон, при помощи еще одного трехлитрового бидона. Как это сделать?

10) В шестилитровом ведре 4 литра парного молока, а в семилитровом — 6 литров. Как из шестилитрового ведра вылить ровно 1 литр при помощи еще одной трехлитровой банки?

Комментарий репетитора:
При пользовании олимпиадных задач на переливание репетитор по математике предоставляет ученикам 5 — 6 классов великолепное средство для развития зрительной памяти, ибо поиск верного хода решения требует визуального контроля сразу нескольких параметров (состояний) сосудов. Если в одном из них находится жидкость, то вместе с объемом налитого приходится помнить еще и об объеме свободной части. А это уже целых 2 параметра.

Чтобы упростить учет всех возможностей по изменению состояний репетитор по математике заносит данные об объемах каждого сосуда в специальную таблицу:
Репетитор по математике заносит данные в таблицу

В каждую колонку репетитор заносит состояния всех сосудов после каждого изменения. От ученика потребуется способность внимательно следить за их параметрами, дабы избежать повторений. Если перебрать все возможные варианты ни разу не повторяясь, то среди них обязательно найдется искомая комбинация.

Колпаков А.Н. Репетитор по математике, Москва. Подготовка к олимпиадам.

{ 1 комментарий… прочтите его или напишите еще один }

Сергей сентября 19, 2014 в 10:58

Александр, спасибо за прекрасную возможность для дополнительного занятия математикой с дочерью на базе Вашего сайта.

Оставьте комментарий