Техника поиска решений репетитором задач по геометрии

by Колпаков А.Н. on 4 ноября 2016

Если Вы регулярно просматриваете решения задач по математике в тех или иных источниках, то, безусловно, обращали внимание на их декларационный характер. То есть последовательность шагов просто сообщается и не разъясняется, почему она именно такая и, самое главное, как до нее догадаться обычному школьнику. При индивидуальном подходе к обучению ситуация, как правило, не улучшается. Приглашенный репетитор по математике попросту повторяет Вашему ребенку то, что написано в книжках. При таком формате работы ценность репетитора неуклонно снижается, ибо на ОГЭ/ЕГЭ обязательно подвернется какая-нибудь незнакомая задача. Кроме того при желании можно и самостоятельно прочесть кучу решений, добиваясь в итоге (с той или иной скоростью) определенного уровня знаний. Конечно, большинство школьников и этого сделать не могут. Им нужен руководитель и проверяющий в одном лице, а также привычные «инфраструктурные условия», в которых привычно вести учебную деятельность: четкое расписание и план освоения предмета, ведение тетрадей, вопросы и ответы и т.д. Но если уж говорить о репетиторе по математике как о максимальном средстве борьбы за знания и развитие, то стоит остановиться на методах обучения поиску решений.

Такое обучение под силу только профессионалу с большой буквы. Мыслительную механику чрезвычайно сложно описывать словами. Одна размытая ориентировка и ученик запутается. Глубокий анализ порой неоднозначно воспринимается и упирается в законы мироздания, но все же попытаемся разобраться в принципах на примере нескольких геометрических задач. Предположим, что ученик знает теорию и не испытывает проблем с реализацией простейших логических операций.

Пример, на котором репетитору легко показать технику поиска

Пример, на котором репетитору легко показать технику поиска

Два равнобедренных треугольника ABC и DBC склеены общим основанием BC. Докажите перпендикулярность прямых BC и AD.

Прежде всего, репетитору важно научить ребенка правильно «брать старт» в решении, а для этого требуется понять, какие факторы влияют на отрезок AD и как вообще можно придти к перпендикулярности. Допустим, что ответ получен: надо придти к углу 90 градусов. Как? Перебираем в голове все известные в 7 классе приемы, теоремы и определения, связанные прямыми углами. Их не так много: 1) определение высоты 2) непосредственный поиск угла через вычисления или через уравнение. Напрягаем мозги. Вычисления нереальны – нет никаких значений в градусах. Для уравнений желательно иметь равные углы, которые можно было бы обозначить одной буквой «икс», либо иметь несколько связующих условий. А у нас только есть вертикальные и смежные углы. Значит надо либо доказывать, что смежные углы AОC и DОC равны, либо брать теорему о высоте, а ей нужен равнобедренный треугольник с медианой, либо биссектрисой. Это в свою очередь потребует объяснить то, что равны отрезки, или равны углы. То есть в любой случае надо получить какие-нибудь равные элементы рисунка. Откуда их взять? Нужно помнить о том, что в 7 классе 80% задач решается через равные треугольники. Вот и возникает с подачи репетитора по математике главный вопрос для старта: «Какие треугольники рассмотреть?»

На старт, внимание, марш

Как правило, ученики видят по рисунку равенство ABО и ACО и зависают над ними. В чем принципиальная ошибка? В разрезании верхнего треугольника на интересующие нас части участвует линия AD, положение которой зависит от точки D. Если в рассмотренных треугольниках не будет вершины D – мы получим произвольное разрезание на части, которое не гарантирует нам их равенство, поэтому доказательство зайдет в тупик. Аналогичная история и с нижней парой треугольников. Здесь уже тупиком будет выброс точки A. Получается, что в паре искомых треугольников должны участвовать обе точки A и D, а значит AD — сторона хотя бы одного из треугольников.
У нас имеется только два треугольника со стороной AD, подозрительно похожих на равные: ABD и ACD. Вот мы и вышли на старт. Любой хорошист укажет репетитору по математике на третий признак в обосновании их равенства.
Далее собираем урожай с нашего поиска – любые соответствующие элементы в треугольниках равны. Какие взять? Помним о том, что нам нужны либо отрезки, либо углы. И то, и другое есть. Например, BO=CO или угол BAD равен углу CAD. В первом случае мы имеем медиану AO, во втором – биссектрису AO. А тогда AO – высота.

«Ясновидение» по математике

Как Вы видите, никакого ясновидения со стороны репетитора. Все действия подкрепляются целесообразностью шагов и логически продиктованы ситуацией. Умению «вскрывать» математику можно и нужно учить, с раннего возраста на систематических занятиях, начиная с подобных простых примеров. В последние годы я резко снизил на своих занятиях процент деклараций решений. Все чаще открываю ученику сам процесс размышлений, озвучивая свои мысли. Говорю: «Если был я не был репетитором и учился математике на твоем месте, то размышлял бы следующим образом ...». И начинаю подробно описывать все этапы поиска, вместе с возможными тупиковыми ходами и даже ошибками, то есть ровно так, я должен размышлять обычный человек. Постепенно ученик проникается идеями и каким-то волшебным образом начинает чувствовать математику интуитивно. В каждом человеке живет некое разумное начало, надо только до него достучаться и заставить работать во благо получения знаний. Что я и делаю на своих уроках в Строгино.

С уважением, Колпаков А.Н. Репетитор. Москва.

{ 0 комментариев… напишите первый комментарий }

Оставьте комментарий